Skip to main content

SQI: Simpson Querry Institute

Samuel I. Stupp

  • Board of Trustees Professor of Materials Science & Engineering, Chemistry, Medicine, and Biomedical Engineering
  • Director, Simpson Querrey Institute
  • Director, Center for Regenerative Nanomedicine

Samuel Stupp's research focuses on supramolecular self-assembly to create functional nanostructures and materials designed for applications ranging from biological activity to improved electronic and photonic properties. The group’s strategy is to design and synthesize organic molecules that are programmed to spontaneously form nanostructures through noncovalent interactions. Development of this area of "supramolecular materials chemistry" can lead to synthetic structures that emulate the shape, dimensions, and function of proteins and other biological macromolecules. An important focus is to apply self-assembling peptide-based materials for applications in regenerative medicine.

The group is also interested in the mineralization of nanostructures to template hybrid organic-inorganic materials inspired by the natural process of biomineralization. These materials could have important biomedical applications such as bone regeneration, or be used as materials for solar cells, solar fuel production, or energy storage. New research in the Stupp lab involves developing novel materials that integrate covalent and supramolecular polymers, targeting smart dynamic structures that can function as artificial muscles or exhibit the ability to self-repair.

Key Publications

Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators
Chin, S.M.; Synatschke, C.V.; Liu, S.; Nap, R.J.; Sather, N.A.; Wang, Q.; Álvarez, Z.; Edelbrock, A.N.; Fyrner, T.; Palmer, L.C.; Szleifer, I.; Olvera de la Cruz, M; Stupp, S.I.
Nature Communications. 2018, 9, 2395. 

Sulfated Glycopeptide Nanostructures for Multipotent Protein Activation
Lee. S.S.; Fyrner, T.; Chen, F.; Alvarez, Z.; Sleep, E.; Chun, D.S.; Weiner, J.A.; Cook, R.W.; Freshman, R.D.; Schallmo, M.S.; Katchko, K.M.; Schneider, A.D.; Smith, J.T.; Yun, C.; Singh, G.; Hashmi, S.Z.; McClendon, M.T.; Yu, Z.; Stock, S.R.; Hsu, W.K.; Hsu, E.L.; Stupp, S.I.
Nature Nanotechnology. 2017, 12, 821-829. 

Supramolecular Nanostructures that Mimic VEGF as a Strategy for Ischemic Tissue Repair
Webber, M.J.; Tongers, J.; Newcomb, C.J.; Marquardt, K-T.; Bauersachs, J.; Losordo, D. W.; Stupp, S.I.
PNAS. 2011, 108 (33), 13438-13443. 

Supramolecular Design of Self-Assembling Nanofibers for Cartilage Regeneration
Shah, R.M.; Shah, N.A.; Del Rosario Lim, M.M.; Hsieh, C.; Nuber, G.; Stupp, S.I.
PNAS. 2010, 107 (8), 3293-3298.

Spontaneous and X-Ray Triggered Crystallization at Long Range in Self-Assembling Filament Networks
Cui, H.; Pashuck, E.T.; Velichko, Y.S.; Weigand, S.J.; Cheetham, A.G.; Newcomb, C.J.; Stupp, S.I.
Science. 2010, 327 (5965), 555-559. 

Self-Assembly of Large and Small Molecules into Hierarchically Ordered Sacs and Membranes
Capito, R.; Azevedo, H.; Velichko, Y.R., Mata, A.; Stupp, S.I.
Science. 2008, 319 (5871), 1812-1816. 

Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers
Silva, G.A.; Czeisler, C.; Niece, K.L.; Beniash, E.; Kessler, J.A.; Stupp, S.I.
Science. 2004, 303 (5662), 1352-1355.

Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers
Hartgerink, J.D.; Beniash, E.; Stupp, S.I.
Science. 2001, 294 (5547), 1684-1688.

SQI Publications

See all SQI publications authored by Samuel I. Stupp


Areas of Interest

Biomaterials, Materials Properties and Characterization, Nanoscience Synthesis and Devices