Skip to main content

SQI: Simpson Querry Institute

Michael C. Jewett

  • Walter P. Murphy Professor of Chemical and Biological Engineering
  • Charles Deering McCormick Professor of Teaching Excellence
  • Director, Center for Synthetic Biology (CSB)

PhD (2005), Stanford University

Our research group is motivated by a desire to understand, harness, and expand the capabilities of biological systems for compelling applications in medicine, materials, and energy. Specifically, we focus on designing, constructing, and modifying biological systems involved in protein synthesis and metabolism to (i) understand why nature’s designs work the way they do and (ii) open the way to products that have been impractical, if not impossible, to produce by other means. An innovative feature of our research program is the use of cell-free systems. The foundational principle is that we can conduct precise, complex biomolecular transformations without using intact cells, which provides an unprecedented and otherwise unattainable freedom of design to modify and control biological systems. For example, cell-free systems avoid the need to balance the tug-of-war that exists between the cell’s physiological and evolutionary objectives and the engineer’s process objectives. We are also pioneering new directions to repurpose the translation apparatus for synthetic biology. The goal is to monitor, interrogate, and understand the process of translation, and with this knowledge diversify, evolve and repurpose the ribosome and its peripheral machinery into a re-engineered machine to generate non-natural polymers as new classes of sequence-defined, evolvable matter.

Our research activities are structured into four thrust areas: (1) cell-free protein synthesis and orthogonal translation systems, (2) engineered ribosomes, (3) metabolic engineering, and (4) glycosylation. These research areas are connected by approach (e.g., cell-free systems) and their focus on biocatalytic systems (e.g., the translation apparatus). They advance new understanding of biological knowledge and develop enabling technologies for the production of therapeutics, biomaterials, and biochemicals.

Areas of Interest

Cancer Therapeutics, Cell-Free Synthetic Biology, Protein Synthesis, Synthetic Biology, Systems Biology